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Syllabus

1-Flexural stresses in beams (4 Weeks)

2) Transverse shear stresses (4 Weeks)

3) Stress and strain transformations (3 Weeks)
4) Deflection in beams (3 Weeks)

5) Buckling of Columns (2 Weeks)



Chapter One

Flexural stresses in Beams

Review of Shear and Bending Moment Diagrams
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AV = fw(x] dx

change in  area under
shear  distributed loading

AM = ]V(x) dx

change in  area under
moment  shear diagram

Due to load changing, shear and bending moment are discontinuous and that is why they
have to be calculated at different regions (x1, x2, x3,...)
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Bending Deformation of a Straight Member

Horizontal lines
become curved

Vertical lines remain
straight, yet rotate

Before deformation

After deformation

(a) (b)

Consider, for example, the undeformed bar in the figure, which is marked with
longitudinal and transverse grid lines. When a bending moment is applied, we notice that
the longitudinal lines become curved and the vertical transverse lines remain straight
and yet undergo a rotation.

The bending moment causes the material within the bottom portion of the bar to stretch
and the material within the top portion to compress. Consequently, between these two
regions there must be a surface, called the neutral surface, in which longitudinal fibers of
the material will not undergo a change in length.

From the above observations, we can draw the following conclusion, all cross sections of
the beam remain plane and perpendicular to the longitudinal axis during the deformation.
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Notice that any line segment located on the neutral surface, does not change its length,
whereas any line segment located at the arbitrary distance y above the neutral surface,
will contract and become after deformation. By definition, the normal strain along is
determined as

— g As" — As
- ._\.';!EE[} As

Substituting As" = (p — y)A8, and As = pA# in the above expression for strain,

- (p — y)AB — pA#
E pr—
Af—0 pAd

Or

y
€=—=

P
This important result indicates that the longitudinal normal strain of any element within
the beam depends on its location y on the cross section and the radius of curvature of the
beam’s longitudinal axis at the point. In other words, for any specific cross section, the
longitudinal normal strain will vary linearly with y from the neutral axis. For points
above the neutral axis (y is positive, the strain is (-ve) or contraction and those points
below the neutral axis (y is +ve) the strain is (+ve) or elongation.
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Normal strain distribution

Here the maximum strain occurs at the outermost fiber, located a distance of y = ¢ from
the neutral axis. Using the strain equation and by division,



So that

The Flexure formula

Assuming the material is linear elastic (Hooke’s
law) or o = Ee

_ } _ _ Normal strain variation
Fr=2F; 0= LdF B [4“ dA (profile view)
a
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Bending stress variation
(profile view)

Bending stress variation



Since o,/ 1s not equal to zero, then

f}-‘dﬁ\ =0
A

Or the first moment of the cross-section equals zero.

In other words, the first moment of the member’s cross-sectional area about the neutral
axis must be zero. This condition can only be satisfied if the neutral axis is also the
horizontal centroidal axis for the cross section.

We can determine the stress in the beam from the requirement that the resultant internal
moment M must be equal to the moment produced by the stress distribution about the
neutral axis. The moment of a differential force dF is dM = dF y and since dF = odA

(Mg), = SM.: M = /_de _ /_}’{:r{fA) - /;(if;) dA
A A A \¢C

or

M = Tmax / V2 dA
c JA

Which can be written as

Mc

Tmax — I

Where | is the moment of inertial of the cross section about the neutral axis. Substitute

0= — (?y) Omax



From which,

Problems

A beam has a rectangular cross section and is subjected to the stress distribution shown in
Figure. Determine the internal moment M at the section caused by the stress distribution
(a) using the flexure formula, (b) by finding the resultant of the stress distribution using
basic principles.

SOLUTION
Part (a).
_ Mc
o=
_6*123_864_ .
T in
ol 2x864
M=—= = 288k.in
c 6
Part (b).

1. e 2\yp :
F = 5(6 n. )(2 kip/in )(6 in. ) = 36 kip

Furthermore, they act through the centroid of each
volume, i.e. (§ * 6in = 4in). Then

M=Fx4in=36kip*x8in=288k.in




The simply supported beam in Figure has the cross-sectional area shown in Fig. 6-26b.
Determine the absolute maximum bending stress in the beam and draw the stress
distribution over the cross section at this location.

S5kN/m
bbeiidbiddbidd -
h 2o — —-—-1\

\ | a ol
| 6m |
(a) (c)
Solution: X 5 20mmi [ = ] 1
250 * 340% 230 * 300
I= :2 — Iz = 301.33(10)"® mm* = P ISDlmm )
M€ 22.5(10)3(N) * 170(mm) N 20w g 1507mm
Imax = = 301.3376(mm?*) _12'7mm220m...

| _ vx
— 12.7 MPa ' K2
250 mm
(b)

NOTE: It is, in many times, easier to use N and mm units
and the stress result will be in MPa.

S 12.7 MPa
At point B on the cross section, the stress is NG \.,) 2
B 2 _~11.2 MPa

M, 0 V5 _ 22.5(10)3(N) * 150(mm)
I 301.337¢(mm*)

O-B:_

=-11.2 = 11.2 MPa Compression.

mm?

12.7 MPa

(d)



The simply supported truss is subjected to the central distributed load. Neglect the effect
of the diagonal lacing and determine the absolute maximum bending stress in the truss.

The top member is a pipe having an outer diameter of 1 in. and thickness of % in and the

bottom member is a solid rod having a diameter of% in.

@)
100 1b/ft 5.751in. |
— o

P

Y Y YYy

! 6 ft | 6 ft ! 6 ft !

Solution: o

1) Find max. bending moment M, - -T--

5.75”

2) Locate the N.A. (which is the centroid of the whole section)

3 10,

Interior radius of the pipeis 1 — 2 *
16 16

Take the first moment of the areas about the centroid of the solid rod:

2a;y;

Y =
Zai

= 4.6091"

3) Find the moment of inertia about the N.A. I;, = 5.9271 in*

4) Oppax = # = 22.1 ksi and C is the distance from the N.A. to the farthest point away
from the N.A.

Note: You need to memorize the following formulas:

T __ -

b

- — Circular area
Triangular area



Unsymmetric Bending

The sections considered so far are symmetric sections like the T-beam and the channel
shown to the right.

v

But consider the section show in figure shown below. This PE——
) ) isan
L~ O max > —
2| dF = odA -~ = - ~_— Neutral axis
71 o

Bending-stress distribution
(profile view)

(a) (b) A
Axis of symmetry

m"uﬁlcutral axis

AN

unsymmetric section, as result there will be bending
moment about the Y-axis in addition to the bending moment
about the Z-axis. The moment about the X-axis is zero.
Why?

X

So the balance equations are :
1) Sum of the forces along X-axis is zero
2) Sum of bending moments about the Z-axis should equal applied moment about Z-axis

3) Sum of bending moments about the Y-axis should equal =0 (No applied moment
about Y-axis = 0).

Mathematically, these can be translated as follows:

Fr=ZF 0=—/ffdA
A
(Mg), = =M ,; 0= —/Z(;r dA
’ ’ A
(Mg); = ZM_; M = /yu—d/l.
A

First equation as before

0= — (?y) Omax



Fr=ZF; 0= /:fF = /ffdA
A A
(Y
= -\~ “’madi
A C

TN max
%/ dA
Since o ,,/c 1s not equal to zero, then - JA

f_'!r-‘ dA =0
A

Again, this condition can only be satisfied if the neutral axis is also the horizontal
centroidal axis for the cross section.

For the second equation, substitute the following equation for stress and integrate
0= (Z) Omax
C

0= L/; dA
¢ A

which requires

/yz dA =10
A

This term is called product of inertia and this condition is satisfied if either the Z or Y
axes are axes of symmetry or these axes are principal axes. Here these axes are NOT axes
of symmetry, then the Z and Y axes must be principal axes.

For the third equation, substitute the following equation for stress and integrate
0= (z) Omax
Cc

Which will lead to the same result before

What is different from before?



The stress can be determined by combining the stresses from bending around both axes as
follows:

M,y My
L
. 1,

o= —

Consider the general case of a prismatic beam subjected to bending-moment components
M, and M., as shown, when the x,y,z axes pass through the centroid of the cross
section. If the material is linear-elastic, the normal stress in the beam is a linear function
of position such that ¢ =a+ by + cz. Using the equilibrium conditions 0 =
J,0dA,M, = [ ,z0dA,M, = [, — yodA, one can determine the constants a, b, and c,
and show that the normal stress can be determined from the equation

o= [-(M,I, + MyL,,)y + (M, I, + M,1,,)z]/(I,,1, — 1)

where the moments and products of inertia are defined in Appendix A of the book
“Mechanics of Material for Hibbeler”.

I the section is not symmetric and M,, = 0 but we do the calculations about two principal

axes, the I, = 0, then this is case 1) and o = —g.

If the section is symmetric and the loading is about two axes (M,and M,,), and we do
My | Myz

calculations about two principal axes I,,, = 0, then this is case 2and o = — ; -
z y



Problems:

The beam is subjected to a bending moment of M=20 Kips.ft directed as shown.
Determine the maximum bending stress in the beam.

Solution:

The y and z components of M are negative, Fig. a. Thus,

M, = —20sin45" = —14.14 kip - ft

M. = -20cos45" = —14.14 kip- ft.

£

The moments of inertia of the cross-section about the principal centroidal y and z
axes are

I, = 11—2(16){103) - 1—12(14)[83} = 736 in*

1 3 1 3 =4
- = T - _ — = Vel
I: =3 (10)(16°) T (8)(14°) = 1584 1n , ;
By inspection, the bending stress occurs at corners A and C are 42°
z
M{'. y M_u ¥4 M=2o
o = — I + ! A I D=
£ Y 7 @
& e !
B o —14.14(12)(8)  —14.14(12)( — 5)
Tmax = T¢ = 1584 + 736 Zz = ‘—>M!—
< N\
=20lksi (T) Ans. P 2 S

B ~1414(12)(-8) | —14.14(12)(5)
FTmax = T4 1584 736

—2.01 ksi = 2.01 ksi (C) Ans,



If the resultant internal moment acting on the cross section of the aluminum strut has a
magnitude of M=520 N.m and is directed as shown, determine the bending stress at
points A and B. The location y of the centroid C of the strut’s cross-sectional area must

be determined.

Solution:
20 mr? i
Internal Moment Components: yTTB

M = 520 N'm

I— : i C
12 _ 5 200
M, = _E (520) = —480N-m M, = ﬁ[:ﬂ{]} =200N-m _le [;30 —

LZOO mm —{—200 mm—

\
— /A mm
A

_Iapy; -
Y = = 57.4mm from top edge of the section
2a; §20 Am
(8 , '3
- )
Then calculate I,and I, : ¢ U [L
I, = 366.627 » 10°mm* ! @
I, =57.6014 x 10mm* 4'} My
& > Mg
I
Maximum Bending Stress: Applying the flexure formula for biaxial at points A
and B
Ma:}" !w_l,u..

= +

7 . 1,
—480(—0.142632) . 200(—0.2)

L - - - —

' 57.6014(10°%)  0.366827(107)

= —1.298 MPa = 1.30 MPa (C) Ans.
—480(0.057368) . 200(0.2)

T = —

. S7.6014(10°%)  0.366827(10 7)

Ans.

= (L3587 MPa (T)



Composite Beams: (Skip for now and time permits, will be given later)

Beams constructed of two or more different materials are referred to as composite beams.
For example, a beam can be made of wood with straps of steel at its top and bottom,
Figure. Engineers purposely design beams in this manner in order to develop a more
efficient means for supporting loads.

Since the flexure formula was developed only for beams having homogeneous material,
this formula cannot be applied directly to determine the normal stress in a composite
beam. In this section, however, we will develop a method for modifying or
“transforming” a composite beam’s cross section into one made of a single material.
Once this has been done, the flexure formula can then be used for the stress analysis.

Steel plates

This solution method is called “Transformed section method”” which transforms the beam
into one made of a single material. The key point in this this method is that the plane
sections will remain plane and as a result the strain will vary linearly over the cross
section.

Normal strain variation
(profile view)

(b)

Bending stress variation
(profile view) Bending stress variation

(©) (d)



Consider a beam made of two different materials with two different Moduli of elasticity,
the upper one is stiffer than the lower one (E1>E2). The strain varies linearly over the
cross section as in the figure below(b). However, the stress will vary linearly over the
upper material but since there is a sudden change in the material at the interface between
the two materials, there will be a sudden change in the stress distribution as shown in
figures (c) and (d).

First assume that we want to use material 2 for the whole section and replace material 1
in Fig(a). We don’t know if the new area will be wider or narrower until we calculate it
such that the carried force should be the same by the new area as by the original one.

Let’s assume the new width is (n dz) then since the carried force must be the same:

Eiedzdy = E,e(ndz)dy
E,

"TE

This dimensionless number n is called the transformation factor. It indicates that the

cross section, having a width b on the original beam, Fig. a, must be increased in width

to b, = nb (since E1>E2) in the region where material 1 is being transformed into

material 2, Fig. e.

>

Beam transformed to malerial@'
(e)

- l =
"/bl' =n'b
Beam transformed to material@
(H)



In a similar manner, if the less stiff material 2 is transformed into the stiffer material 1,
the cross section will look like that shown in Fig. f. Here the width of material 2 has been

changed to b1 = n'b where 11 = g .In this case the transformation factor will be less

than one since E1>E2. In other words, we need less of the stiffer material to support the
moment.

The stress on the actual stress o on the material before transformation is calculated from
the previous equation or the force on the transformed section is the same as the force on
the original material.

dF = odA = ¢'dA’
odzdy = o'ndzdy
o =no’

Where ¢’ is the stress on the transformed area and o is the stress on the original area.

Problem:

A composite beam is made of wood and reinforced with a steel strap located on its
bottom side. It has the cross-sectional area shown in Fig. a. If the beam is subjected to a
bending moment of M = 2 kN.m determine the normal stress at points B and C. Take Ew
=12 GPa and Est = 200 GPa.




Solution:

Although the choice is arbitrary, here we will transform the section into one made
entirely of steel.

The width of transformed wood into steel is:

., _126Pa
st = N by = 5aamp, (150 mm)
_ S5§A [0.01m](0.02m)(0.150m) + [0.095m](0.009m)(0.150m)
A 0.02m(0.150m) + 0.009m(0.150m)
150 — )3 73 y — 20)3
150 — 7)3 73 v — 20)3
= 9*%+ 150*%— (150—9)*%

= 9.358 * 10°mm*

2(10%)N - m(0.170m — 0.03638m)

o8 = 9.358(10-6)m*
_ 2(10*)N - m(0.03638m)

%c = T 9358(10-%)m*

= 28.6MPa

= 7.78MPa

The normal-stress distribution on the transformed (all steel) section is shown in Fig. c.

The normal stress in the wood at B in Fig. a, is determined as,

_ 12GPa
~ 200GPa
Using these concepts, show that the normal stress in the steel and the wood at the point

where they are in contact is o, = 3.5 MPa and o, = 0.21MPa respectively. The
normal-stress distribution in the actual beam is shown in Fig. d.

Og = Nnaog (28.56MPa) = 1.71MPa

1.71 MPa

-0.210 MPa
3.50 MPa

N M =2kN-m
= -
7.78 MPa .
\
(c) L



Inelastic bending: (Skip for now and time permits, will be given later)

This trial-and-error procedure is obviously very tedious, and fortunately it does not occur
very often in engineering practice. Most beams are symmetric about two axes, and they
are constructed from materials that are assumed to have similar tension-and-compression
stress—strain diagrams. Whenever this occurs, the neutral axis will pass through the
centroid of the cross section, and the process of relating the stress distribution to the
resultant moment is thereby simplified.

Stress distribution
{profile view)

Problem:

The beam in Fig. a below is made of an alloy of titanium that has a stress—strain diagram
that can in part be approximated by two straight lines. If the material behavior is the same
in both tension and compression, determine the bending moment that can be applied to
the beam that will cause the material at the top and bottom of the beam to be subjected to

a strain of 0.050 in./in.

o(ksi)

B 190 , -
- -~ A \ A\) /

AW

150

€ (in./in.)

0.010 0.050

(a)



Solution |:

By inspection of the stress—strain diagram, the material is said to exhibit “elastic-plastic
behavior with strain hardening.” Since the cross section is symmetric and the tension—
compression diagrams are the same, the neutral axis must pass through the centroid of the

cross section. The strain distribution, which

is always linear, is shown in Fig b. Below, In

particular, the point where maximum elastic strain (0.01 in/in) occurs has been
determined by proportion, such that 0.05/1.5 in=0.01/y then y=0.3 in. The stress

distribution is shown in Fig (c) below.
-~ 005
(3 0.010 —

0.05

Ths

]

s

Strain distribution

(b)

190 ksi

| E—
—
—

y=03in. ,
150 ksi =——

e

[ = 150 ksi =—

1.5 in. (o a—

'l‘—

l —
190 ksi

Stress distribution

(c)

The resultant forces of the parts of the stress diagram are shown in Fig (d) below.

(d)

T, =Cy = %(1,2 in.)(40 kip/in?)(2 in.) = 48 kip

]H.+: =
iy

y; = 0.3 (1.2in.)

1.10 in.



T, = C, = (1.21in.)(150 kip/in?)(2 in.) = 360 kip

o

1
v = 03in. + —(12in.) = 0.90n.
1
Ty = C3 = (0.3 in.)(150 kip/in®)(2in.) = 45 kip

V3 = %(0.3 in.) = 0.2 in.

The moment of the section will be calculated to be:

M = 2[48 kip (1.101n.) + 360 kip (0.90 in.) + 45 kip (0.2 in.)]
= 772 kip - in. Ans.

SOLUTION H:

Rather than solving the problem semigraphically, it is also possible to find the moment
analytically.

03”7

o = 15(103)e = 15(103) =500y for0<y<03

0.05
o = 1000€ + 140 = 1000 = 15

y+140 =333y +140 for03<y<15

dM = y(o dA) = yo(2 dy)

0.3 in. 1.5in.
M = 2[2 / 5002 dy + 2 ] (33.3y2 + 140y) dy}
0 0

3 in.

= 772 kip - 1n. Ans.

(e)



Conceptual problems:

Problem 1: -
Hurricane winds caused failure of this highway sign by |

bending the supporting pipes at their connections with

the column.

1) Search for a formula to calculate the wind pressure
from the Internet (wind pressure P (Pa) is a function of
the basic wind speed V(m/sec).

2) Search for the basic wind speed in your area zone.

3) Assume reasonable dimensions of the pipes
supporting the sign and the sign (For example outer
diameter 2 in=5cmor 2.5 in =6.25 cm or 3in 7.5 cm).
The thickness could be % in=0.625 cm or % in=1.25
cm.

Note: when designing a steel section make sure it’s available in the market or you need to
build it using welding for example.

4) Estimate the length of the supporting pipes (For example 1.5m or 2 m)

5) Calculate maximum moment of the wind pressure on the pipes) and ignore the weight
of the pipes and the sign.

6) Check maximum stress on the pipes using the flexure formula and check against
maximum Yield stress of the steel type A36. You need to search and find this allowable
stress for this type of steel.




Solution:
1) Wind pressure P = 0.613 V2
2) In Iraq, basic wind speed is 44 m/sec

3) Assume the supporting pipes are of 2 in=5 cm outer diameter and ¥z in=0.625 cm
thick. And the sign dimensions are 0.750mx1m.

4) Assume length of the supporting pipes is 2m.
5) Wind pressure is P = 0.613 * 442 = 1,186.768% and maximum bending moment is

1,186.768 * 0.75 * 1 * 1.5 = 1,335.114 N.m . This moment is carried by two pipes so
each one carries 1335.114/2=667.557 N.m.

0.05%*T  (0.05—0.00625)*m

6 Ina=— - = 0.127(107)m* then
MC 0.075
_ Mc _ e 3 I
o= o 667.557 * e = 131.4 MPQ < Oyield 250 Mpa O0.K.
Problem 2:

Draw bending moment diagram for the ship boom in the figure below and explain why it
tapers this way.

Solution: DIY




Transverse Shear:

In general, a beam will support both shear and moment. The shear V is the result of a
transverse shear-stress distribution that acts over the beam’s cross section. Due to the
complementary property of shear, however, this stress will create corresponding
longitudinal shear stresses which will act along longitudinal planes of the beam as shown

in Fig. below.

Transverse
shear stress

b

LL)ngllUdlﬂal/J\ g7
shear stress ™ -~ <I\
EA

To illustrate this effect, consider the beam to be made from three boards, Fig. a. If the top
and bottom surfaces of each board are smooth, and the boards are not bonded together,
then application of the load P will cause the boards to slide relative to one another when
the beam deflects. However, if the boards are bonded together, then the longitudinal shear
stresses acting between the boards will prevent their relative sliding, and consequently
the beam will act as a single unit, Fig. b.

' v

Boards not bonded together Boards bonded together
(a) (b)



The shear formula

Because the strain distribution for shear is not easily defined, as in the case of axial load,
torsion, and bending, we will develop the shear formula in an indirect manner. To do this
we will consider the horizontal force equilibrium of a portion of the element taken from
the beam in Fig.a.

W - ATEa:= A'
on plane
\

F F,

T A

Y Ny N _ 0
||, My

X ! v
(a)
dx >
> F, = 0 satisfied
— .
Il";:_ q_
dF" - dF'
'.II—--
M | ‘f
(| 3 M+ dM
e — —-
dF" f . dF’
dx
(b)

The equilibrium is satisfied for the element in Fig b above. However, consider the shaded
top portion of the element that has been sectioned at y from the neutral axis Fig (c)
below.
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Three-dimensional view (c) Profile view

XE, =0 will NOT be satisfied unless a shear stress acts on the bottom face of the
element, then we have,

EIF, =0 /n'af,q' - f dA" — 7(tdx) = 0
J A4 A’

/(M)Pd‘_‘q’ — /(ﬂ)yﬂrﬂf — 7(tdx) =0
A I a\
dM
(T)fydﬁ’ = 7(f dx)
A’

1 [dM
c=— () [ yaar
Ir( dx )[1”

Since V = ‘Z—IZ (shear force equals rate of change of bending moment or slope of bending
moment diagram)

solving for 7, we get

Call Q = fAy dA that represents the first moment about N.A. for an area below which
shear stress is determined.

t: is the thickness of the beam. Then the shear formula becomes.

_re

T



This stress is assumed to be constant and therefore averaged across the width t of the
member.

Examples:

The solid shaft and tube shown in Fig. 7-9a are subjected to the shear
force of 4 kN. Determine the shear stress acting over the diameter of
each cross section.

SOLUTION

Section Properties. Using the table on the inside front cover, the
moment of inertia of each section, calculated about its diameter (or
neutral axis), is

i J
50 mm 50 mm

1 1
[ Ewrf‘ = 7 7(005 m)* = 4.909(10"") m*

1 1 .
Tibe = E'.rr(r:ﬁ - ch = Ew[(n.os m)* — (0.02 m)*] = 4.783(10" %) m*

The semicircular area shown shaded in Fig. 7-9b, above (or below)
each diameter, represents (, because this area is “held onto the member”
by the longitudinal shear stress along the diameter.

_ 4¢ (wc\ _ 4(0.05 m) (w(o.ns m)l) e A
oid = VA =—|—|= =§3.33
Quolia = V' A 3?7( > ) i 3 83.33(107") m
_ syar— i, (mcE\ 4 [ wct
Quee = 2V A" =32\ ) ~37 32

_ 4(0.05 m) (w(ﬂ.DS m)z) _ 4(0.02m) (ﬁ{n,oz m)z)
2 2

3 I

= 78.0(10~%) m*

Shear Stress. Applying the shear formula where t = 0.1 m for the
solid section, and 1 = 2(0.03 m) = 0.06 m for the tube, we have

VQ _ 4(10°) N(83.33(10” %) m’)

Tsolid = " = 679 kPa Ans.
It 4.909(107") m*(0.1 m)
VO 4(10°) N(78.0(10 %) m’
e =2 = D NTEXO )M _ 00 mpa Ans
It 4.783(107") m*(0.06 m)
NOTE: As discussed in the limitations for the shear formula, the éﬂ

calculations performed here are valid since the shear stress along
the diameter is vertical and therefore tangent to the boundary of the
cross section. An element of material on the diameter is subjected to (b)
“pure shear™ as shown in Fig. 7-95. Fig. 7-9



Determine the distribution of the shear stress over the cross section of
the beam shown in Fig. 7-10a.

<

(a)

SOLUTION

The distribution can be determined by finding the shear stress at an
arbitrary height y from the neutral axis, Fig. 7-10b, and then plotting
this function. Here, the dark colored area A’ will be used for Q.*
Hence

orn i )4 b4

Applying the shear formula, we have

_VQ_VQWﬂﬂ—fw_EK(
T T (Lbr)b T b

%—f) M)

This result indicates that the shear-stress distribution over the cross
section is parabolic. As shown in Fig. 7-10c, the intensity varies from
zero at the top and bottom, y = +A/2, to a maximum value at the
neutral axis, y = 0. Specifically, since the area of the cross section is
A = bh, then at y = (0 we have

Shear—stress distribution

(c)

v
Fig. 7-10 Toax = 157 @

*The area below y can also be used [A" = b(k/2 + y)]. but doing so involves a bit
more algebraic manipulation.




The beam shown in Fig. 7-124 is made from two boards. Determine

6.5 kN/m
- the maximum shear stress in the glue necessary to hold the boards
together along the seam where they are joined.
|—4m~‘74 m—| SOLUTION
150 mm Internal Shear. The support reactions and the shear diagram for the
, 1 U mm beam are shown in Fig. 7-125b. It is seen that the maximum shear in the
N E‘ A beam is 19.5 kN.
- |- 150 mm
1 Section Properties. The centroid and therefore the neutral axis
—| |—30 mm will be determined from the reference axis placed at the bottom of the
@ cross-sectional area, Fig. 7-124. Working in units of meters, we have
_ ZyA
- ZA

_ [0.075 m](0.150 m)(0.030 m) + [0.165 m](0.030 m)(0.150 m) _
- (0150 m)(0.030 m) + (0.030 m)(0.150 m) = 0120m

The moment of inertia, about the neutral axis, Fig. 7-12a, is therefore

1
V (kN) I= [E[D.[BD m)(0.150m)* + (0.150 m)(0.030 m)(0.120 m — 0.075 m]z}
6.5 1
; 5 8 y(m) T E[D.ISD m)(0.030m)* + (0.030 m)({0.150 m)(0.165 m — 0.120 m]z}
= 27.0(10"%) m*
(b) 105 The top board (flange) is being held onto the bottom board (web) by

the glue, which is applied over the thickness ¢ = 0.03 m. Consequently
A’ is defined as the area of the top board, Fig. 7-124. We have

Q =7 A = [0180m — 0.015m — 0.120 m](0.03 m)(0.150 m)
= 0.2025(107) m’

V=195kN Shear Stress. Using the above data and applying the shear formula
yields

VO 195(10°) N(0.2025(107°) m’)

o ~ 488MPa  Ans
It 27.0(10°°) m*(0.030 m) "

The shear stress acting at the top of the bottom board is shown in
Fig. 7-12c.

NOTE: It is the glue’s resistance to this longitudinal shear stress that
holds the boards from slipping at the right-hand support.




Combined Loading

The normal stress is

P 150 Ib

And the bending stress is
Mc 7501b-in.(5in.)

A~ (10in.)(4in.)

= 3.75 psi

T max

Elements at B and C are subjected to the following combined

stresses

I L4in)(10in.)?

og = —3.754 4+ 11.25 = 7.5 MPa Tension

o, == —3.754 — 11.25 = 15 MPa Compression

L7375 psi

Normal Force

(©)

Bending Moment

(d)

= 11.25 psi

(10in. — x)
Combined Loading
(e) () (2)



Stress Transformation

Plane stress

It was shown in Sec. 1.3 that the general state of stress at a point is characterized by six
independent normal and shear stress components, which act on the faces of an element of
material located at the point, Fig. a. This state of stress, however, is not often encountered
in engineering practice. Instead, engineers frequently make approximations

or simplifications of the loadings on a body in order that the stress produced in a
structural member or mechanical element can be analyzed in a single plane. When this is
the case, the material is said to be subjected to plane stress, Fig. b. (the case when all the
stress components in the Z-direction are zeros o, = 7,,, = T, = 0.)

P
~ w
{u&f ¥

o v T
. T /\\;/

General state of stress Plane stress
(a) (b)

The plane stress state in Fig (b) above can represented as in Fig below

.1I:|




Imagine that we need to determine the stresses on an inclined square that is cut from the
original square as in figure below. The inclined axes are x' and y' and the stresses in

these directions are o' , g," and T,

f

Assume that the area of each side of the inclined square is AA. The vertical and horizontal
areas are as shown in the figure below to the right. The forces are shown in the figure top
the left.

o, AA cos i
H

Ty AA cOs 0

= ‘A A sin #

.U/g/‘: [ Ty AA sin 6

f
\J

oy AA sin



We need to convert stresses to forces to determine the equilibrium of the free body
diagram. Stresses cannot be used in equilibrium calculations.

+/2Fy =0; oy AA — (7, AAsin#)cost — (o, AAsinf)sinf
— (tyyAAcosf)sinf — (o, AAcosfl)cost =0

v . 7 .
oy = 0,c08 0 + o,sin” 0 + 7.(2sin f cos 6)

TNZFy =0; 7y AA + (7,yAAsinb)sind — (o, AAsin ) cos ¢
— (tyyAAcosf)cost + (o, AAcosf)sintl =0

Tyy = (0y — 0y)sinflcosf + Tx_v(cc-szﬁ — sin? f)

These two equations may be simplified by using the trigonometric
identities sin 26 = 2sin # cos #, sin’ # = (1 — cos 26)/2, and cos’ 6 =
(1 + cos 26)/2, in which case,

oyt oy Oy — 0Oy _
Ty = 2 + > cos 260 + 7, sin 26 (9-1)

Oy T Oy
Tey = 5 sin 26 + 7, cos 26 (9-2)

Since g,,'is normal to o,/' then o, can be determined by substituting & = 6 + 90° in the
first equation to get

Fy ™ by Oy — by .
Ty = 5 — — 5 —cos 26/ — 7, sin 20 (9-3)




Example

50 MPa

80 MPa

——1—» 25 MPa

(©)
4.15MPa
68.8 MPa
258 MPa
(@

Fig. 9-7

The state of plane stress at a point is represented by the element shown
in Fig. 9-Ta. Determine the state of stress at the point on another
element oriented 30° clockwise from the position shown.

SOLUTION

This problem was solved in Example 9.1 using basic principles. Here
we will apply Egs. 9-1 and 9-2. From the established sign convention,
Fig. 9-3, 1t 1s seen that

o, = -80MPa  o,=50MPa 7, = 25MPa

Plane CD. To obtain the stress components on plane CD, Fig. 9-7b,
the positive x' axis is directed outward, perpendicular to CD, and the
associated y' axis is directed along CD. The angle measured from the x
to the x" axisis 6 = —30° (clockwise). Applying Eqgs. 9-1 and 9-2 yields

e

oy =—> 7 cos 20 + 74y sin 260
—80+5 —-80 — 5
= 0 TR os2(-30°) + (-25) sin2(~301)
— —25.8 MPa =
0Ty — U—}' c
Tyy = B — sin 20 + 7, cos 20
_ _Msinz(_:ﬂ)u) + (—25) COSZ(_3UUJ
— —68.8 MPa Ans

The negative signs indicate that o, and 7, act in the negative x’ and
v' directions, respectively. The results are shown acting on the element
in Fig. 9-7d.
Plane BC. Tn asimilar manner, the stress components acting on face
BC,Fig.9-7c, are obtained using # = 60°. Applying Egs.9-1 and 9-2.*
we get

—80 +50 —80—50

Ty = 3 3 cos 2(60°) + (—25) sin 2(60°)
= —4.15 MPa Ans.
Tyy = —y sin 2(607) + (—25) cos 2(60°)

= 68.8 MPa Ans.

Here 7, has been calculated twice in order to provide a check. The
negative sign for ¢, indicates that this stress acts in the negative x'
direction, Fig. 9-7¢. The results are shown on the element in Fig. 9-7d.

*Alternatively, we could apply Eq. 9-3 with # = —30° rather than Eq. 9-1.



Principal stresses

From the equation of o’ , 0," and 7,/ that they depend of the orientation angle 6 , so

there must be a direction where the values of these stresses would be maximum or
minimum. To find the maximum and minimum normal stress, we have to differentiate the
equation of g,” and set it to zero,

do,' Oy —0y
- 3 (2sin(20) + 21,y cos(26) = 0
Solving this equation, we obtain the orientation of 6 = 6,, of the planes of maximum and
minimum normal stress.

Txy
tan(29p) = W
2
From the from the shaded triangles shown in Figure below, the solution of the above
equation has two roots 6,,;and 6,,when both z,,, and (o, — 0,,) has same sign, positive
or negative.




Substitute sin(26,,) , sin(26,,), cos(26,,) and cos(26,,) from the figure above into
Equation (9-1) to get maximum and minimum values of normal stress

Oy T oy Ty — Ty
{]'1,2=—:|: E— ‘I'T_r}r2

The cracks in this concrete beam were caused
by tension stress, even though the beam was
subjected to both an internal moment and
shear. The stress-transformation equations
can be used to predict the direction of the
cracks, and the principal normal stresses that
caused them.

o,and o,are the maximum o;and minimum o, in-plane stresses and also called the in-
plane principal stresses.

The planes on which principal stresses act are called principal planes. On these planes
the shear stresses t,,,,=0. In other words, no shear stresses on these planes.

JEEE E—. '1".1}1

In-plane principal stresses



Maximum In-Plane Shear Stress.

The orientation of an element that is subjected to maximum shear stress on its sides can
be determined by taking the derivative of Eq. 9-2 with respect to 8and setting the result
equal to zero. This gives

zﬁls[ o, — ”_';
—(ox — y)/2 J ( 2 )
tan 26, = —— | |

| xy |
2”-"':\\5

_ rrl_ — I'.I'_I.
3
. A

The two roots of this equation 8,; and 6, can be determined from the shaded triangles
shown in the Figure above. By comparison with Eq of tan (26,), of tan (26,) is the
negative reciprocal of tan (26,,) and so each root of 26; is 90 ° from 26, and the roots of
65 and 6,,is 45 ° apart.

Therefore, an element subjected to maximum shear stress will be 45° from the position
of an element that is subjected to the principal stress.

Substituting the sin (26,) and cos(26,) from the figure above into Eq (9-2) using either
root of 8, to get maximum in-plane shear stress

f 2

o, — o, :
T m: =\/| — + Tev
" In-plane \ 2 " xy

Also substituting the sin (26,) and cos(26;) into Eq (9-1), we see that there is an
associated normal stress that is called average normal stress

o, T Ty



Important Points

® The principal stresses represent the maximum and minimum
normal stress at the point.

® When the state of stress is represented by the principal stresses,
no shear stress will act on the element.

® The state of stress at the point can also be represented in terms of
the maximum in-plane shear stress. In this case an average normal
stress will also act on the element.

® The element representing the maximum in-plane shear stress
with the associated average normal stresses is oriented 45° from
the element representing the principal stresses.




